Top Quark Mass Measurements

Christopher S. Hill University of California, Santa Barbara

On Behalf of the CDF and D0 Collaborations

Why Measure the Top Quark Mass?

- Because it 's there"
 - George Leigh Mallory (when asked why climb Mt. Everest)
- m_{top} is a fundamental parameter of the Standard Model
- When combined with precision electroweak data, constrains the mass of the elusive Higgs Boson

Top Production and Decay at Tevatron

- Pair Produced
 - q/anti-q annihilation
 - gluon fusion
 - At \sqrt{s} = 1.96 TeV

$$\sigma_{t\bar{t}} = 6.7^{+0.7}_{-0.9} \text{ pb}$$

(for $m_{top} = 175 \text{ GeV/c}^2$)

- Decays before hadronizing
 •t → Wb
- Events classified by W decay
 - "Lepton [e,μ] + jets"(30%)
 •tt → bl νbqq'
 - "Dilepton [e,μ] "(5%)
 •tt → bl/bl/
 - "All jets"(44%)
 •tt → bqq'bqq'
 - "Tau + X"(21%)

Experimental Signatures

- Spherical, central events
 - Decay within $|\eta| < 2.0$
- Two b quark jets with high E_T
 - I dentified by displaced secondary vertex ("b-tag")
- Additional energetic light quark jets or leptons from W decay
 - Significant E_T from undetected neutrino in leptonic modes
- Possible additional jets from initial or final state gluon radiation

Experimental Challenges

- Mass reconstruction done at parton level but ...
- We detect missing transverse energy not neutrinos
 - $-p_z^{\nu}$ unknown
 - Ambiguity in m_{top}
- We measure jets not quarks
 - Measured energy has to be corrected back to parton-level
 - Limited jet energy resolution
 - Imperfect jet energy scale
 - Many possible jet-parton assignments
 - E.g. lepton+jets mode has 4 jets to be assigned to b₁,b₂,q₁,q₂

∴4! = 24 permutations

» Can be reduced if one or more b's are tagged

Review of Run I Measurements

- Measurements of top mass in all decay modes were made by CDF & D0 with data from Run I of the Tevatron
 - For many years world average was
 - $m_{top} = 174.3 \pm 5.1 \text{ GeV/c}^2$
- Recent, significantly more precise D0 measurement
 - $-m_{top} = 180.1 \pm 5.4 \text{ GeV/ } c^2$
 - Nature **429**, 638-642 **(2004)**
 - Comparable precision to <u>all</u> previous measurements <u>combined</u>

Significant Effect on Expected Higgs Mass

New world average

- $-m_{top} = 178.0 \pm 4.3 \text{ GeV/ } c^2$
- Changes Higgs mass value favored by electroweak fits
 - $m_H \approx 113 \text{ GeV/ } c^2$
 - Much less in conflict with LEP limit on SM Higgs
 - m_H > 114.4 GeV/c² @ 95% C.L.

(old value was 96 GeV/ c²)

Where does improved precision come from?

- Matrix Element ("ME")
 analysis technique using maximal event information
 - Instead of using crosssection as a prior probability to predict a final state
 - Use cross-section as a posterior probability for likelihood of the measured final state

Similar to Dynamical Likelihood Method ("DLM")

- 1988 by K. Kondo (J.Phys. Soc. 57, 4126)

General description of DO ME technique

- ullet To measure a parameter α from N events
 - Maximize likelihood given by $L(\alpha) = e^{-N \int \overline{p}(x;\alpha) dx} \prod_{i=1}^{N} \overline{P}(x_i;\alpha)$

where x_i is a set of measured observables and $P(x_i;\alpha)$ is obtained from the differential cross-section for the process as follows:

 $d^n\sigma$ is the differential cross section

W(**y**,**x**) is the probability that a parton level set of variables **y** will be measured as a set of variables **x**

$$\overline{P}(x;\alpha) = \frac{1}{\sigma} \int d^n \sigma(y;\alpha) dq_1 dq_2 f(q_1) f(q_2) W(x,y)$$

f(q) is the probability distribution than a parton will have a momentum q

- Detector resolution is accounted for in the "transfer function", W(x,y)
- Detector acceptance is incorporated as $\overline{P}_{measured}(x;\alpha) = Acc(x)\overline{P}_{production}(x;\alpha)$
- Background processes ME's are explicitly included in the likelihood

For K-1 backgrounds,
$$\overline{P}(x; c_1, ..., c_K, \alpha) = \sum_{i=1}^K c_i \overline{P}_i(x; \alpha)$$

DO Run I Top Mass Analysis Using MEMethod

- Analysis performed in lepton (e,μ) + jets channel
 - 22 candidate tt events with exactly 4 jets selected
- Signal Probability given by

$$P_{t\bar{t}}(x, m_{top}) = \frac{1}{12 \sigma_{t\bar{t}}} \int d^{5}\Omega \sum_{perm, \nu} |M_{t\bar{t}}(m_{top})|^{2} \frac{f(q_{1}) f(q_{2})}{|q_{1}||q_{2}|} \Phi_{6} W(x, y)$$

With transfer function

$$W(x, y) = \delta^{3}(p_{e}^{y} - p_{e}^{x}) \prod_{j=1}^{4} W_{jet}(E_{j}^{y}, E_{j}^{x}) \prod_{i=1}^{4} \delta^{2}(\Omega_{i}^{y} - \Omega_{i}^{x})$$

- Electrons, angles considered well-measured
- Background model is VECBOS W+ jets

$$P_0(x; c_1, c_2, \alpha) = c_1 P_{ttbar}(x; \alpha) + c_2 P_{W+jets}(x)$$

 $m_{top} = 180.1 \pm 3.6(stat) \pm 3.9(syst) GeV/c^2$

Tevatron Run II

- CDF & D0 upgraded detectors performing well
- Run II Luminosity
 - After slow start, both experiments have recorded nearly 0.5 fb⁻¹
 - Results with up to 200 pb⁻¹
 - Expect 4.4-8.5 fb⁻¹ by end of Run II
 - •Currently 85% of "Design"
- Precision of Top Mass measurements will soon be limited by systematic uncertainties
 - Goal: δ m_{top} ≈ 2-3 GeV

CDFRun II Top Mass Analysis Using DLM Method

- Analysis performed in lepton (e,μ) + jets channel
 - Require exactly 4 jets
- For ith event, likelihood is defined as

$$L^{i}(M_{top}) = \sum_{I_{t}} \sum_{I_{s}} \int \frac{2\pi^{4}}{Flux} F(z_{a}, z_{b}) f(p_{T}) |M|^{2} w(I_{t}, \mathbf{x} | \mathbf{y}; M_{top}) d\mathbf{x}$$
PDFs LO ttbar
Matrix Flement

- Two summations over
 - Jet-Parton Assignments (I_t)
 - Neutrino Solutions (I_s)
- Transfer Function w (x,y)
 - $-(E_{parton}-E_{jet})/E_{jet}$
 - Parametrized as function of E_T and η
 - Computed separately for b and light quark jets

DLM Background – Mapping Function

- Background not included in likelihood
- Instead "Mapping" Function used
 - $M_{reconstructed} \rightarrow M_{generated}$
 - Effective shift on reconstructed mass due to background measured in MC as a function of background fraction
 - Also incorporates mass dependence of transfer functions

CDF Run II Top Mass - DLM Results

- 22 tt candidate events selected
 - 4.2 ± 1.2 estimated background
- Top quark mass extracted by minimizing $\Lambda(M_{top}) = -2ln \left(\prod_{event} L^i(M_{top})\right)$ and applying 19% background fraction mapping function

Systematic Uncertainties	∆M _{top} (GeV/c²)
Jet Energy Scale	5.3
ISR	0.5
FSR	0.5
PDF	2.0
Generator	0.6
Spin correlation	0.4
NLO effect	0.4
Bkg fraction(± 5%)	0.5
Bkg Modeling	0.5
MC Modeling(jet,UE)	0.5
, , , , , , , , , , , , , , , , , , ,	2.0
Transfer function	2.0
Total	6.2

$$m_t = 177.8^{+4.5}_{-5.0}(stat) \pm 6.2(syst) \text{ GeV}/c^2$$

CDF Run II Top Mass – Template Method

- Lepton+Jets Event Selection
 - 1 e, mu with $p_T > 20$ GeV/c
 - ≥ 3.5 jets with $E_T > 15(8)$ GeV
 - $E_T > 20 \text{ GeV}$
 - ≥1 b-tag
- Reconstruct invariant mass of top in each event
 - Compute χ^2 as follows:

$$\chi^{2} = \sum_{l,jets} \frac{(\hat{p}_{T} - p_{T})^{2}}{\sigma_{p_{T}}^{2}} + \sum_{x,y} \frac{(\hat{U}_{i} - U_{i})^{2}}{\sigma_{p_{T}}^{2}} + \frac{(M_{jj} - M_{w})^{2}}{\Gamma_{w}^{2}} + \frac{(M_{lv} - M_{w})^{2}}{\Gamma_{w}^{2}} + \frac{(M_{bjj} - M_{t})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{blv} - M_{t})^{2}}{\Gamma_{t}^{2}}$$

- Minimize with M_t as a free parameter for all parton assignment permutations and two neutrino solutions
- Histogram reconstructed mass with smallest χ^2
 - Build templates from MC for
 - Signal process with different m_{top}
 - Background processes

CDF Run II Top Mass – Template Results

- 28 tt candidate events selected
 - 6.8 ± 1.2estimatedbackground
- Extract top mass
 - Compare reconstructed mass distribution in data (yellow) to signal & background templates
 - Unbinned likelihood fit

CDF Run II Preliminary (162 pb⁻¹)

$$m_t = 174.9^{+7.1}_{-7.7}(stat) \pm 6.5(syst) \text{ GeV} / c^2$$

CDF Run II Top Mass – Multivariate Method

- Another lepton+ jets template analysis
- Reduces systematic uncertainty
 - Adjustable jet energy scale calibrated in W → qq' decay
- Improves mass resolution
 - Uses kinematic variables to determine probability that best χ² results from correct jet-parton assignment
 - Weight signal templates accordingly
- Augments reconstructed top mass with kinematic information to improve signal/ background separation
 - $-\Sigma p_T$ of 4 leading jets

Multivariate Templates

CDF Run II Top Mass – Multivariate Results

- 33 tt candidate events selected
 - Background fraction determined by fit

$$m_t = 179.6^{+6.4}_{-6.3}(stat) \pm 6.8(syst) \text{ GeV}/c^2$$

$$f_b = 0.34 \pm 0.14$$

Other CDFRun II Top Mass Analyses

- Non-Tagged Mass
 - Lepton plus jet events without any b-tags
 - Exclusive complement to btag sample
 - Result will be combined with measurements from tagged sample

 $m_t = 179.1_{-9.5}^{+10.5} (stat) \pm 8.4 (syst) \text{ GeV} / c^2$

- Dilepton Mass
 - Event Selection
 - 2 e, μ with $p_T > 20 \text{ GeV}$
 - ≥ 2 jets with E_T > 15 GeV
 - $E_T > 25 \text{ GeV}$
 - Top mass is under-constrained due to two v
 - Introduces the following constraint to kinematically solve the system

$$P_z^{t\bar{t}} = P_z^t + P_z^{\bar{t}} = 0$$

- Analysis was performed on 126 pb⁻¹
 - Currently being updated to 193 pb⁻¹

$$m_t = 175.0_{-16.9}^{+17.4}(stat) \pm 8.4(syst) \,\text{GeV}/c^2$$

Summary and Future Outlook

- Substantial recent progress in m_{top} measurements
 - D0 Matrix Element technique
 - Significantly more precise Run I world average
 - CDF preliminary m_{top} results with Run II data in lepton+jets and dilepton channels
 - D0 Run II measurements in progress
 - Combined measurements soon
 - Across decay modes
 - Between experiments
- Both experiments now have ~5x
 Run I dataset on tape
 - Precision m_{top} measurements in the not too distant future
 - Challenge will be reduction of jetenergy scale systematic uncertainty

155 160 165 170 175 180 185 190 195 *Top Mass (GeV/c²)* This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.